Matemática

A Matemática estuda quantidades, medidas, espaços, estruturas e variações.

Um trabalho matemático consiste em procurar por padrões, formular conjecturas e, por meio de deduções rigorosas a partir de axiomas e definições, estabelecer novos resultados.

A Matemática vem sendo construída ao longo de muitos anos. Resultados e teorias milenares se mantêm válidos e úteis e ainda assim a matemática continua a desenvolver-se permanentemente.

Definição:

A matemática é a ciência, do raciocínio lógico e abstrato.

Divisões:

Aritmética:

É o ramo mais antigo e mais elementar da matemática, usado por quase todos, para tarefas que vão desde a contagem do dia-a-dia simples de ciência avançada e cálculos de negócios. Matemáticos profissionais, por vezes, usam o termo "aritmética superior" quando se refere a resultados mais avançados relacionados à teoria dos números, mas isso não deve ser confundido com a aritmética elementar.

Análise:

Uma disciplina muito mais ampla, tais tópicos são tratados em uma subdivisão chamada análise real. Se a Análise surgiu do estudo dos números e funções reais, sua abrangência cresceu de forma a estudar os números complexos, bem como espaços mais gerais, tais como os espaços métricos, espaços normados e os espaços lineares topológicos (ELT). Embora seja difícil definir exatamente o que seja análise matemática e delinear precisamente seu objeto de estudo, pode-se dizer grosseiramente que a análise se dedica ao estudo das propriedades topológicas em estruturas algébricas.

Geometria:

Qualidades que são denominadas axiomas de geometria. Por exemplo, os axiomas de Hilbert, Esses axiomas não são provados, mas podem ser usados em conjunto com os conceitos matemáticos de ponto, linha reta, linha curva, superfície e sólido para chegar a conclusões lógicas, chamadas de teoremas. A influência da geometria sobre as ciências físicas foi enorme. Como exemplo, quando o astrônomo Kepler mostrou que as relações entre as velocidades máximas e mínimas dos planetas, propriedades intrínsecas das órbitas, estavam em razões que eram harmônicas — relações musicais —, ele afirmou que essa era uma música que só podia ser percebida com os ouvidos da alma — a mente do geômetra. Com a introdução do plano cartesiano, muitos problemas de outras áreas da matemática, como álgebra, puderam ser transformados em problemas de geometria, muitas vezes conduzindo à simplificação das soluções.

Álgebra:

Juntamente com a geometria, topologia, análise combinatória, e Teoria dos números. O termo álgebra, na verdade, compreende um espectro de diferentes ramos da matemática, cada um com suas especificidades. A álgebra elementar, que frequentemente faz parte do currículo no ensino secundário, introduz o conceito de variável representativa de números. Expressões usando estas variáveis são manipuladas usando as regras de operação aplicáveis a números, como a adição. Estes conceitos podem ser usados, por exemplo, na Resolução de equações. Por sua vez, A adição e a multiplicação podem ser generalizadas e as suas definições exactas conduzem a estruturas tais como os grupos, anéis e corpos, que são estudados na área da matemática intitulada álgebra abstrata.